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ABSTRACT

The communicability distance between pairs of regions in human brain is used as a

quantitative proxy for studying Alzheimer’s disease. Using this distance, we obtain the

shortest communicability path lengths between different regions of brain networks from

patients with Alzheimer’s disease (AD) and healthy cohorts (HC). We show that the shortest

communicability path length is significantly better than the shortest topological path length

in distinguishing AD patients from HC. Based on this approach, we identify 399 pairs of

brain regions for which there are very significant changes in the shortest communicability

path length after AD appears. We find that 42% of these regions interconnect both brain

hemispheres, 28% connect regions inside the left hemisphere only, and 20% affect vermis

connection with brain hemispheres. These findings clearly agree with the disconnection

syndrome hypothesis of AD. Finally, we show that in 76.9% of damaged brain regions the

shortest communicability path length drops in AD in relation to HC. This counterintuitive

finding indicates that AD transforms the brain network into a more efficient system from the

perspective of the transmission of the disease, because it drops the circulability of the disease

factor around the brain regions in relation to its transmissibility to other regions.

AUTHOR SUMMARY

We use a geometric measure for the separation of the different regions in the brain, which

accounts for how well such regions communicate to each other. Our approach is based on

the consideration of a “susceptible-infected” model of the propagation of a disease factor

across the brain network. Our first important result is the finding that the shortest

communicability path length is significantly better than the shortest topological path length

in differentiating patients with Alzheimer’s disease (AD) from healthy individuals. The second

and most important finding is the extraction of structural factors that seems to be responsible

for the appearance of AD. In particular, we find brain regions in which communicability

distance is significantly affected by AD. Most of them interconnect both brain hemispheres or

the vermis with them. Remarkably and counterintuitively, we found that in 76.9% of

damaged brain regions there is a drop in the communicability distance, indicating that AD

makes the brain network more efficient to the transmission of the disease between brain

regions.
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Communicability distance and Alzheimer’s

INTRODUCTION

The human brain is arguably the most complex of all complex systems. At the most basic struc-

tural level of interest for neurosciences, the human brain consists of 1011 neurons and 1012 glial

cells, which communicate through neural projections (Herculano-Houzel, 2009). These cells

are then packed into local circuits (DeBello et al., 2014) or large gyri, which define anatomical

and functional regions in the brain. The human brain is considered to be outstanding among

mammalian brains: it is the largest than expected from body size, and it has an overdevel-

oped cerebral cortex representing over 80% of brain mass (González-Forero & Gardner, 2018;

Herculano-Houzel, 2009). Most of the complexity of these different size scales of the human

brain comes not only from the number of its components but mainly from the intricate webs

of connections linking these components. The emerging field of network neuroscience studies

the structural and dynamical properties of these webs observed at different size scales from a

variety of noninvasive neuroimaging techniques (Bassett & Sporns, 2017). The term pathocon-

nectomics has been coined by Rubinov and Bullmore (2013) to describe the use of network

neuroscience techniques on the analysis of abnormal brain networks (see also Stam, 2014).

The goals of pathoconnectomics are not only of practical relevance as in the early diagnosis

of psychiatric and developmental disorders, stroke, severe brain injury, and neurodegenerative

diseases, but also in the understanding of their causal mechanisms as pointed out by Raj and

Powell (2018). Due to its societal challenge, Alzheimer’s disease (AD) has become a major

focus of the pathoconnectomic research agenda. AD is the most common neurodegenera-

tive disorder and it represents a major growing health problem for elderly population (Head

et al., 2004; Impedovo, Pirlo, Vessio, & Angelillo, 2019; Lo et al., 2010; Rose et al., 2000).

It is characterized by a continuous degradation of the patient, which starts with a preclinical

stage, a phase of mild cognitive impairment (MCI), and finishes with dementia. The molec-

ular basis of these different stages appear to be linked to the presence of β-amyloid (Aβ) in

senile plaques and cerebral amyloid angiopathy, as well as tau proteins (tau) in neurofibrillary

tangles (Brettschneider, Del Tredici, Lee, & Trojanowski, 2015; Jack Jr. et al., 2013; Jucker &

Walker, 2011). For instance, the cognitive decline in AD correlates with tauopathy (Braak &

Braak, 1991; Crystal et al., 1988; Wilcock & Esiri, 1982), while the aggregation of Aβ appears

to be critical in the early stages that trigger events conducting to tauopathy, neuronal dysfunc-

tion, and dementia (Hardy & Selkoe, 2002). Then, it is plausible that these proteins, Aβ and

tau, originate in a particular region of the brain and then propagate through neural fibers in a

prion-like manner (Jucker &Walker, 2013; Mandelkow &Mandelkow, 1998; Walker & Jucker,

2015; Warren et al., 2013).

The hypothesis of the self-propagation of AD in combination with network neurosciences

has triggered the use of epidemiological models on networks to simulate the propagation of

a disease factor as AD progresses. In particular, Peraza et al. (2019) have proposed the use of

the susceptible-infected (SI) model on networks (see, for instance, Canright & Engø-Monsen,Susceptible-infected model:
Epidemiological model where
individuals can be either susceptible
to a disease or be infected by it.

2006; Mei, Mohagheghi, Zampieri, & Bullo, 2017; Newman, 2010), in which nodes are in two

possible states, infected (I) or susceptible (S). The first corresponds to brain regions wherein the

disease factor is present with high probability, while the second are those free of the disease

factor but that can be infected from any infected nearest neighbor. Similar principles have

guided Iturria-Medina et al. (2014) in modeling the progression of AD under the Network

Diffusion Model of disease progression in dementia (Raj, Kuceyeski, & Weiner, 2012).

Here we start by adopting the SI-model for the propagation of a disease factor in AD. How-

ever, we use this model to connect with the theory of network communicability, which has
Network communicability:
A measure of how a perturbation in a
node is transmitted to another by
using all possible channels.

been widely used in network neurosciences (for some applications of communicability in

pathoconnectomics, see Crofts & Higham, 2009; Crofts et al., 2011; de Lange et al., 2019;
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De Reus & van den Heuvel, 2014; Johansen-Berg, Scholz, & Stagg, 2010; Lella et al., 2019;

Li et al., 2013; Mancini et al., 2016; Qin et al., 2015; Sanchez-Rodriguez et al., 2018; Taylor

et al., 2018). That is, we will provide a theoretical connection between the network commu-

nicability and the probability of a disease factor of propagating from one node to another in a

network. Using this connection, wewill consider a measure that accounts for the difference be-

tween the circulability of this disease factor around a given pair of nodes and its transmissibility

from one region to the other. This measure is a Euclidean distance metric—communicability

distance—for the corresponding pair of nodes in the network. We then find the length of the

shortest communicability paths between every pair of regions in human brains for cohorts ofShortest communicability path:
The shortest path between two nodes
in which the edges are weighted by
the communicability distance.

healthy (HC) and AD individuals after appropriate normalization. We report in this work that

(i) the shortest communicability path length is orders of magnitude more significant in distin-

guishing AD from HC than the shortest topological path length, (ii) there is a set of 399 pairs

Shortest topological path:
The shortest of all topological paths
between two nodes.

Topological path:
Sequence of nodes and edges
without repetition that connect two
nodes.

of regions for which there are very significant changes in the shortest communicability path

length after AD, and (iii) 42% of these significant pairs of brain regions interconnect both brain

hemispheres, while 28% connect regions inside the left hemisphere only, in agreement with

findings related to the disconnection syndrome. Additionally, 20% of these pairs of affected

Disconnection syndrome:
Alteration of the connections
between different brain regions
rather than in the regions itself.

regions are connecting the vermis with any of the two brain hemispheres, in agreement with

recent results; (iv) for 76.9% of these pairs of damaged brain regions there is an increase in

the average cliquishness of the intermediate regions that connect them, which implies a sig-

nificantly higher energy consumption for communication between these regions in AD than

in HC.

THEORETICAL APPROACH

Here we will use indistinguishably the terms graph and network and follow the classical no-

tation in network theory (see, for instance, Estrada, 2012c). A graph G = (V, E) is defined by

a set of n nodes (vertices) V and a set of m edges E = {(u, v)|u, v ∈ V} between the nodes.

The degree of a vertex is the number of edges incident to it. A walk of length k in G is a set of

nodes i1, i2, . . . , ik, ik+1 such that for all 1 ≤ l ≤ k, (il , il+1) ∈ E. A closed walk is a walk for

which i1 = ik+1. A path is a walk with no repeated nodes. The length of a path is the number

of edges in that path. The shortest of all paths connecting the same pair of vertices is known

as the shortest topological path. A graph is connected if there is a path connecting every pair

of nodes. Here we will only consider connected graphs.

Let A be the adjacency matrix of the graph, which for simple finite graphs is symmetric, and

thus its eigenvalues are real. We label the eigenvalues of A in nonincreasing order: λ1 ≥ λ2 ≥

. . . ≥ λn. Since A is a real-valued, symmetric matrix, we can decompose A into A = UΛUT ,

where Λ is a diagonal matrix containing the eigenvalues of A and U = [
−→
ψ 1, . . . ,

−→
ψ n] is

orthogonal, where
−→
ψ i is an eigenvector associated with λi. Because the graphs considered

here are connected, A is irreducible and from the Perron–Frobenius theorem we can deduce

that λ1 > λ2 and that the leading eigenvector
−→
ψ 1, which will be sometimes referred to as the

Perron vector, can be chosen such that its components
−→
ψ 1(u) are positive for all u ∈ V.

Susceptible-infected model

We start by considering an SI model of propagation of a disease factor as AD progresses. In

this case the brain regions, represented as nodes of the graph, can be in two possible states,

infected or susceptible. Susceptible brain regions are those that are free of the disease factor

but that are susceptible to get infected from other regions. The infected ones are those in which

the probability of disease factor is greater than zero. Let i be a node of the graph G = (V, E)

and let xi(t) be the probability that node i get infected at time t from any infected nearest
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neighbor. If the infection rate is given by γ we have, (Canright & Engø-Monsen, 2006; Mei

et al., 2017; Newman, 2010),

dxi(t)

dt
= ~̇x(t) = γ (1 − xi(t))

n

∑
j=1

Aijxj(t), t ≥ t0. (1)

It can be seen that the linearized SI model, namely ~̇x(t) = γA~x(t), represents an upper

bound for the exact SI model, that is,

ẋi(t) = γ[1 − xi(t)]
n

∑
j=1

Aijxj(t) ≤ γ
n

∑
j=1

Aijxj(t) (2)

which in matrix-vector is given by:

~̇x(t) ≤ γA~x(t), (3)

with initial condition ~x(0) = ~x0, ∀i and ∀t. The solution of the linearized SI model ~̇x⋆(t) =

γA~x⋆(t) is given by:

~x⋆(t) = eγtA
~x⋆0 . (4)

However, the solution of the linearized SI model has two important problems. The first is

that the semigroup
(

etA
)

t≥0
is unbounded, that is, limt→∞

∥

∥etA
∥

∥ = ∞, which poses a major

problem for the use of this linearized model as a model of the SI propagation scheme. The

reason is that x(t) is a probability and as such it has to be bounded as 0 ≤ x(t) ≤ 1. The

second is that the solution (4) is a good approximation to the solution of the SI model only for

~x⋆(t) ≈ 0, which makes this solution useless for following the propagation of AD.

To sort out this problem we will follow here Lee, Tenneti, and Eun (2019), who proposed

the following change of variable to avoid the aforementioned problems with the solution of

the linearized SI model:

yi(t) := − log (1 − x⋆i (t)) , (5)

which is an increasing convex function. Then, as 1 − x⋆i is the probability that node i is not

infected at a given time, the new variable yi(t) can be interpreted as the information content

of the node i or surprise of not being infected (see, e.g., Cover & Thomas, 2012). Let us then

suppose that at t = 0 the probability that every region of the brain gets infected is the same,

that is, at the beginning every node has the same probability β to be infected and to be the

one from which the disease propagates. That is,

x⋆0i = β =
c

n
, ∀i = 1, . . . , n (6)

In this case, the solution of the upper bound of the SI model is:

~y(t) =

(

1

α
− 1

)

eαγtA~1 −

(

log α +
1 − α

α

)

~1, (7)

where α = 1 − β is a constant. Also, if we fix γ and t we have that this solution can be

written as

~y(t) = m
(

eζ A
)

~1 − b~1, (8)

for constants m, ζ and b. Here the constant ζ groups the previous parameters γ, α at a given

time t. We will call x̃i(t) = 1 − e−yi(t) the approximate solution of the SI model, which is

always bounded between zero and one as needed.
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Figure 1. Simulation of the progression of a disease with the SI model (broken blue line) in an
Erdős-Rényi random network with n = 100 and connection probability p = 0.1. The lineralized
solution is represented by a dotted black line and the approximate solution using the change of
variables is represented as a solid red line. The panels correspond to infectivity rates β = 0.001 (A)
and β = 0.002 (B).

In order to see the differences between the exact solution of the SI model xi(t), the lin-

earized one x⋆i (t) and the approximate solution after the change of variable x̃i(t), we plot the

progression of the number of infected nodes in an Erdős-Rényi random network with n = 100

and connection probability p = 0.1. We simulate the progression of the disease starting the

infection with a fraction of 0.01 infected nodes in the network. The results are illustrated in

Figure 1 for infectivity rates β = 0.001 (A) and β = 0.002 (B). As can be seen, the lineralized

model (dotted black line) is a bad approximation to the exact solution (broken blue line), as

it quickly diverges. However, the approximate solution obtained by the change of variable

(solid red line) is a tight upper bound for the exact solution, and it will be used here for further

analysis.

The communicability connection

It is clear from Equation 8 that the solution ~y(t) of the upper bound of the SI model depends

linearly of
(

eζ A
)

~1. This term is the sum of the corresponding rows of the exponential of the

adjacency matrix. For an individual node i it is known as the total communicability of the
Exponential of the adjacency matrix:
Infinite sum of powers of the
adjacency matrix divided by the
factorial of these powers.

corresponding node (Benzi & Klymko, 2013) and it can be written as

((

eζ A
)

~1
)

i
=

(

eζ A
)

ii
+ ∑

j 6=i

(

eζ A
)

ij
:= Ci + ∑

j 6=i

Tij, (9)

where the first term in the right-hand side is the subgraph centrality (Estrada & Rodriguez-

Velazquez, 2005) of the node and the second one is the sum of the communicability functions

(Estrada & Hatano, 2008) from the node i to the rest of the nodes of the network (see also

Estrada, Hatano, & Benzi, 2012). In terms of the propagation of a disease factor, Ci represents

the circulability of the disease factor around the node i. The second term represents the trans-

missibility from/to the node i to/from the rest of the nodes of the network. If we concentrate

on the effect of the node i on another node j, then Ci represents the capacity of the node i
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of increasing the probability of infecting itself and Tij is the capacity of i of infecting j. Thus,

because node j is doing the same, the term

ξij(ζ) :=
(

eζ A
)

ii
+

(

eζ A
)

jj
− 2

(

eζ A
)

ij
, (10)

represents the difference between the capacities of both nodes of increasing the probability

of infecting themself to that of infecting each other. A large value of ξij(ζ) indicates that the

disease factor gets trapped circulating at the nodes i and j, which form two islands with little

transmissibility among them. A small value, however, indicates that such transmissibility is rel-

atively large in relation to the internal circulability at the nodes, that is, the nodes have a bridge

between them. We consider that this measure is important for the study of Alzheimer’s disease

because it should allow us to investigate whether the disease produces a patchy environment

of brain regions which form islands with little transmissibility among them. The function ξij(ζ)

can be written as ξij(ζ) =
∥

∥~xi −~xj

∥

∥

2
, where ~xi = eΛ/2~ϕi with ~ϕi = [ψ1,i, ψ2,i, · · · ψn,i], where

ψk,i,is the ith entry of the kth eigenvector associated with the eigenvalue λk of A. Consequently,

ξij(ζ) is a Euclidean distance between the nodes i and j in the network. We call it the commu-Euclidean distance:
The straight-line distance between
two points in a Euclidean space.

nicability distance between the two nodes (Estrada, 2012a, 2012b). The vector ~xi is the posi-

tion vector of the node i in a Euclidean hypersphere of dimension n (Estrada & Hatano, 2016;

Euclidean hypersphere:
A sphere in the n-dimensional
Euclidean space.

Estrada, Sánchez-Lirola, & De La Peña, 2014).

Shortest communicability paths

The communicability distance ξij(ζ) can be calculated for any pair of nodes (connected or

not) in the graph. Thus, we can obtain a communicability distance matrix (Estrada, 2012a)

X =
(

~s~1T +~1~sT − 2 exp (ζ A)
)◦1/2

, (11)

where ~s =
[(

eζ A
)

11
,
(

eζ A
)

22
, · · · ,

(

eζ A
)

nn

]

is a vector whose entries are the main diagonal

entries of the corresponding matrix function, ~1 is an all-ones vector, and ◦ indicates an en-

trywise operation. However, we assume here that in a network “information” flows through

the edges of the graph, such that it uses certain paths connecting the corresponding pair

of nodes. In order to find the shortest communicability paths between two nodes we pro-

ceed as follows. We construct the communicability-weighted adjacency matrix of the network

(Akbarzadeh & Estrada, 2018):

W = A ◦ X = X ◦ A. (12)

Then, the shortest communicability path between two nodes is the shortest weighted path

in W. That is, the shortest communicability path between two nodes i and j for a given ζ > 0 is

the path that minimizes the communicability distance between every pair of nodes in the cor-

responding path. We have proved analytically that when ζ → 0 the shortest communicability

path between any pair of nodes i and j is identical to the shortest (topological) path between

the two nodes (Silver, Akbarzadeh, & Estrada, 2018). That is, the shortest (topological) path is

a special case of the shortest communicability path in a network. In this work we will consider

the case ζ ≡ 1, which we will call “shortest communicability path” and the case ζ → 0 which

we will call “shortest topological path.” Notice that the length of the shortest communicability

path is the sum of the weights (communicability distances) for the edges in that path. For an

example, see Figure 2. Here we will keep ζ = 1 due to the lack of any experimental value

that can guide us for selecting a more appropriate value. Also, we should have in mind that

decreasing the values of this parameter close to zero will make the shortest communicability

paths look very similar to shortest paths, while increasing it over unity will make these paths
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Figure 2. Illustration of the shortest communicability path (blue thick lines) and the shortest topo-
logical path (red thick lines) between a pair of nodes in a random geometric network. The nodes in
both shortest paths are highlighted with blue color and with sizes proportional to their degrees. The
rest of the nodes are in gray color and with a fixed size. The shortest topological path goes through
nodes averaging node degree equal to 14. The shortest communicability path goes through nodes
averaging degree 8.3. Additionally, the average subgraph centrality of the nodes in both paths are
18,837.3 (shortest topological path) and 4,636.6 (shortest communicability path), respectively.

very long indeed. Thus, we left for a further work the analysis of the influence of this parameter

in the study of AD.

DATASET AND IMAGE PROCESSING

The dataset used consists of diffusion-weighted imaging (DWI) scans and anatomical T1 scans

Diffusion-weighted imaging (DWI):
A magnetic resonance imaging (MRI)
modality in which the image contrast
generation is based on the diffusion
of water molecules.

T1 anatomical scan:
Image acquired by exploiting the
spin-lattice relaxation process in
structural MRI.

of 88 subjects, 48healthy controls (HC) and40ADpatients fromthe publicly available Alzheimer’s

Disease Neuroimaging Initiative (ADNI) database. After preprocessing the images, a tractog-

raphy pipeline was implemented by using the MRtrix software library. The main steps of the

Tractography:
Image processing procedure that
allows the reconstruction of fiber
tracts connecting brain region pairs.

whole processing, which are well established in the literature, are shown in Figure 3.

First, a denoising step was performed in order to enhance the signal-to-noise ratio of the

diffusion-weightedMR signals in order to reduce the thermal noise due to the stochastic thermal

motion of the water molecules and their interaction with the surrounding microstructure
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Figure 3. Main steps of the image processing pipeline. DWI and T1 weighted scans are pre-
processed and co-registered. Then, after the fiber orientation distribution estimation, probabilistic
tractography is performed resulting in a weighted connectivity matrix.

Veraart et al. (2016). Head motion and eddy current distortions were corrected by align-

ing the DWI images of each subject to the average b0 image. The brain extraction tool was

then used for the skull stripping of the brain (S. M. Smith, 2002). The bias-field correction

was used for correcting all DWI volumes. The T1-weighted scans were preprocessed by per-

forming the standard steps: reorientation to the standard image MNI152, automatic cropping,

bias-field correction, registration to the linear and nonlinear standard space, brain extraction.

The following step was the intermodal registration of the diffusion weighted and T1-weighted

image.

After the preprocessing and co-registration steps, the structural connectome generation

was performed. First, we generated a tissue-segmented image tailored to the anatomically

constrained tractography (Zhang, Brady, & Smith, 2001). Then, we performed an unsuper-

vised estimation of white matter, gray matter, and cerebro-spinal fluid. In the next step, the

fiber orientation distribution for spherical deconvolution was estimated (Jeurissen, Tournier,

Dhollander, Connelly, & Sijbers, 2014). Then a probabilistic tractography (Tournier, Calamante,

& Connelly, 2010) was performed by using dynamic seeding (R. E. Smith, Tournier, Calamante,

& Connelly, 2015b) and anatomically constrained tractography (R. E. Smith, Tournier,

Calamante, &Connelly, 2012),which improves the tractography reconstructionby using anatom-

ical information by means of a dynamic thresholding strategy. We applied the spherical de-

convolution informed filtering of tractograms (SIFT2) methodology (R. E. Smith et al., 2015b),

providing more biologically meaningful estimates of the structural connection density and a

more efficient solution to the streamlines connectivity quantification problem. The obtained

Streamlines:
Fiber trajectories that can be
reconstructed by means of
tractography algorithms.

streamlines were mapped through a T1 parcellation scheme by using the AAL2 atlas, (Rolls,

Joliot, & Tzourio-Mazoyer, 2015), which is a revised version of the automated anatomical at-

las (AAL) including 120 regions. Finally, a robust structural connectome construction was per-

formed for generating the connectivity matrices (R. E. Smith, Tournier, Calamante, & Connelly,

2015a). The pipeline here described has been used in recent structural connectivity studies,

for example, see Amico and Goñi (2018); Lella, Amoroso, Diacono, et al. (2019); Lella et al.

(2020); Tipnis, Amico, Ventresca, and Goni (2018). The output was a weighted connectivity

matrix for each subject. Out of these 120 nodes, 24 were removed from all networks, in order

to obtain only graphs without isolated nodes. Finally, a 96 × 96 matrix M for each subject was

obtained.

All matrices were binarized by considering only the edges with mij > 0 and the adjacency

matrix A was obtained. The communicability distance matrix was calculated for each binary
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matrix and it was multiplied by the adjacency matrix A obtaining a weighted matrix W. A

shortest path algorithm was performed on this matrix, thus obtaining a matrix whose entries

represent the shortest communicability paths between node pairs in the network. Starting from

the adjacency matrix A, the shortest path length matrix, whose entries represent the shortest

paths between node pairs, was also calculated. A group-wise statistical analysis was performed

in order to find brain region pairs with a statistically significant difference between HC and AD

in shortest path length and shortest communicability path length. In order tomake the statistical

analysis more robust, permutation tests were performed by randomly assigning subjects to the

two comparison groups 1,000 times. Differences were considered significant if they did not

belong to 95% of the null distribution derived from the permutation tests (corrected p value

< 0.05). The false discovery rate (FDR) was used for multiple comparison correction. The sameFalse discovery rate:
The rate at which positives identified
by a method are truly negative ones.

study could also be done by considering the weighted matrix, but we follow here the more

traditional approach on binary matrix. The weighted case could be addressed in future work.

STATISTICAL ANALYSIS

Sensitivity analysis

Our first task here is to analyze the sensitivity of the shortest communicability and the short-

est topological path lengths to detect significant changes in the brain connectivity after AD.

For that purpose we proceed as follow. For each connectivity matrix we calculate both the

shortest communicability path length and the shortest topological path length matrices. In

this case, we use permutation tests for the statistical significance analysis. For instance, let us

consider the nodes vi and vj. We then calculate the length of the communicability short-

est path between these nodes for each of the healthy lHk

(

vi, vj

)

and diseased individuals

lDk

(

vi, vj

)

and then obtain the respective average values, l̄H

(

vi, vj

)

and l̄D

(

vi, vj

)

. Using

these values, we obtain △l
(

vi, vj

)

=
∣

∣l̄H

(

vi, vj

)

− l̄D

(

vi, vj

)
∣

∣. Now we proceed to a random-

ization of each individual into the two classes, that is, healthy and diseased, obtaining 1,000

subsets of random HC and 1,000 subsets of random AD. We then calculate △lrand

(

vi, vj

)

=
∣

∣l̄Hrand

(

vi, vj

)

− l̄Drand

(

vi, vj

)∣

∣, where l̄Hrand

(

vi, vj

)

and l̄Drand

(

vi, vj

)

are computed as before

but using the random sets of healthy and diseased individuals, respectively. Finally, we compare

the null distribution of △lrand

(

vi, vj

)

with the true value △l
(

vi, vj

)

. Therefore, we conclude

that △l
(

vi, vj

)

is significant if it does not belong to 95% of the null distribution, which is car-

ried out by calculating the p value of the permutation test. Here we consider significant the

nodes with corrected p value < 0.05. We use both FDR and Bonferroni correction for the mul-Bonferroni correction:
A statistical method to control false
positives.

tiple comparisons correction. We do these calculations for the shortest communicability path

as well as for the shortest topological path.

Effects of threshold selection and normalization

Here we first consider the effects of the thresholding process on the significance of the results

obtained by using the current approach. The brain networks used in this work, as usually in

many brain network studies, are constructed by using probabilistic tractography. For this reason

weak connections can introduce noisy effects. Therefore, the first thing that we need to inves-

tigate is how different thresholds to transform these weighted matrices into binary (adjacency)

matrices affect the results. The second important question is related to the comparison of net-

works with very different topological characteristics to avoid the extraction of trivial facts. That

is, it is very plausible that the brain networks of AD patients differ significantly in a few “triv-

ial” topological aspects from those of healthy individuals. For instance, the edge density can

change dramatically between HC and AD networks. This may produce the false impression
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Figure 4. Fraction of node pairs with statistically significant different values of shortest commu-
nicability path length (blue squares) in HC and AD compared with the number of node pairs with
statistically significant different values of shortest path length (red squares), at different threshold
values for FDR (A) and Bonferroni correction (B).

that AD mainly produces a sparsification of the brain network that hides important structural

factors produced by the disease. To avoid these problems, we will provide a normalization of

the communicability geometric parameters used in this study as described below.

First, we will proceed to change the threshold at which the adjacency matrices are gener-

ated. We start as usual by calculating the mean matrix for the HC subjects, which results in

a weighted matrix in which entries range from 0 to 1. Each entry represents the frequency at

which the corresponding edges occur among the HC matrices. This matrix is then thresholded

by varying the threshold τ as 0 ≤ τ ≤ 0.9 obtaining a binary matrix to be used as a mask. The

adjacency matrices of all subjects are then projected onto this mask. This procedure resulted

in 10 sets of adjacency matrices, one set for each threshold value. We use the same thresh-

olding procedure described in Lella et al. (2019), which is also similar to the procedure used,

for example, in Van Den Heuvel and Sporns (2011). In Figure 4 we illustrate the results of the

statistical significance for the different thresholds studied here for both FDR (A) and Bonfer-

roni correction (B). The first shocking result is the extremely low significance of the shortest

topological paths according to both multiple comparisons correction methods for all values

of the threshold. According to FDR, for almost all values of thresholds the ratio of significant

node pairs is more than 35 times higher than that for the shortest topological paths, while ac-

cording to the most restrictive Bonferroni correction the ratio of significant node pairs is quite

dependent on the threshold value and the highest ratio of significant node pairs is obtained for

τ between 0.5 and 0.9.

Then, for each value of the threshold we calculate the communicability distance matrix

X (Pi) of subject i. We then proceed to normalize such matrix as follow. Let us call S (Pi) the

shortest communicability path length matrix of the subject Pi, let m (Pi) be the number of edges

of subject i, and let A (Pi) the adjacency matrix of subject i . The average communicability

distance of the edges of the network is then calculated for each subject:

ξ̄ (Pi) =
∑

n
p,q=1 ξpq (Pi)× Apq (Pi)

m (Pi)
, (13)

from which we obtain the normalized shortest communicability path length matrix Ŝ (Pi) as:

Ŝ (Pi) =
S (Pi)

ξ̄ (Pi)
. (14)
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Figure 5. Illustration of a simple graph used to explain the normalized shortest communicability
path length. In red we illustrate the shortest path between the nodes 1 and 6 and in blue the shortest
communicability path between the same nodes. The normalized communicability shortest path
length for the path marked in blue is Ŝ1,6(G) ≈ 1.939, while for that in red is Ŝ1,6(G) ≈ 2.049.

For instance, for the network G in Figure 5 the value of ξ̄(G) ≈ 2.4797, then the normalized

shortest communicability path length for the pair labeled as 1,6 is Ŝ1,6(G) ≈ 1.939, which

corresponds to the path 1 − 9 − 8 − 7 − 6. In contrast, the normalized length of the commu-

nicability path 1 − 2 − 4 − 6 is 2.049, which clearly indicates that this is a longer path in term

of the communicability distance than the path 1 − 9 − 8 − 7 − 6. Notice that 1 − 2 − 4 − 6 is

the shortest topological path between the nodes 1 and 6.

We then analyze the significance for the normalized communicability distance matrices,

for each threshold studied here in the two cases of the FDR and the Bonferroni. In Figure 6A

Figure 6. Fraction of node pairs with statistically significant different values of normalized shortest
communicability path length (blue squares) in HC and AD compared with the number of node pairs
with statistically significant different values of shortest path length (red squares), at different threshold
values for FDR (A) and Bonferroni correction (B).
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we illustrate the ratio of significant node pairs versus the threshold for FDR and in (B) the same

for the Bonferroni correction. We also provide the same results for the shortest topological

paths. The first interesting result is the dramatic difference between the ratios of significant

node pairs obtained from the shortest communicability paths and from the topological ones.

While for the shortest communicability paths we have very significant ratios for both statistical

parameters for certain values of the threshold, for the shortest paths we always observe very

low ratio of significant node pairs both for FDR and Bonferroni correction. The second very

interesting feature of this analysis is the fact that for both statistical criteria the normalized

shortest communicability paths makes a great differentiation of both groups for a threshold of

τ = 0.5. Notice the nonmonotonic behavior of both statistical criteria versus the threshold,

which peak at the before mentioned value.

Now we focus only on the results obtained after the normalization of the communicability

distance matrix and for the threshold found as providing the best results. In Figure 7 we illus-

trate these results using Manhattan plots for the significance of node pairs according to FDR

(panels A and B) as well as for Bonferroni correction (panels C and D). Notice that the hori-

zontal red line corresponds to the significance, that is, − ln(0.05) for FDR and − ln (0.05/κ),

where κ is the number of comparisons, for Bonferroni. All the points over the red line represent

significant node pairs. According to the FDR correction there are 1,551 significant node pairs

for the normalized communicability distance against 120 ones according to the shortest topo-

logical paths. According to the Bonferroni correction there are 399 significant node pairs for

the normalized communicability shortest paths against 71 for the topological ones. We should

Figure 7. Results of the group-wise statistical analysis using FDR (A and B) and the Bonferroni
index (C and D) for the normalized communicability distance matrices with threshold τ = 0.5 (A
and C) as well as for the shortest topological paths (B and D). The node pairs above the red line
have significantly different values in HC and AD.
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remark that FDR controls the expected proportion of false positives, while Bonferroni controls

the overall probability of making at least one false discovery. Then, because the Bonferroni

correction is a more restrictive measure, we will consider only the 399 significant node pairs

identified by this measure. Notice that even with such restrictive criterion the shortest commu-

nicability path identifies more than seven times the number of significant node pairs identified

by the topological shortest paths.

In closing, we observe a huge difference in the sensitivity of the communicability shortest

paths with respect to the shortest topological ones to the change in the brain connectivity

produced by AD. In other words, while the length of the shortest topological paths appear

almost unaltered after the appearance of AD, the length of the communicability ones is affected

in almost all the pairs of brain regions.

Before closing this section, we would like to remark on the huge differences produced by

the normalization procedure used in the current work as a way to restrict our analysis to those

highly nontrivial structural features relevant to AD. When there is no normalization in FDR

case, the shortest communicability path identifies 4,524 node pairs significantly different in

the two diagnostic groups, out of the 4,560 possible total node pairs. That is, 99.21% of the

node pairs are affected. Conversely, the topological shortest path length only identifies 124

node pairs, which represents only 2.72% of node pairs affected. Without normalization we

can also study the influence of the threshold under the ratio of significant node pairs in Bon-

ferroni case. In this case, the best results are obtained for τ = 0.8. Then, there are 4,300 node

pairs significantly different in the two diagnostic groups according to the shortest communica-

bility path, and 95 according to the shortest topological ones. These values represent 95.61%

and 2.08% node pairs affected, respectively. These results show the extraordinary value of the

normalization criterion used in reducing the number of significant node pairs to a handful set

of highly significant ones.

DISCOVERING STRUCTURAL PATTERNS OF ALZHEIMER’S DISEASE

Considering this threshold value, the average shortest communicability path length matrix was

calculated for HC and for AD. Then, we have obtained the difference between the average

matrices for the HC minus that of AD (Figure 8A). For the sake of comparison we also obtained

such differences for the shortest path lengths between every pair of nodes (Figure 8B). We used

a divergent color map centered at zero to represent these differences, and the differences for the

shortest topological path length were set in the same scale of the differences of the normalized

shortest communicability path length. It is interesting to note how this representation allows us

to visualize a different distribution of colors in the two heat maps. In particular, if we consider

the histogram of the values of one of the rows of the heat maps (the row corresponding to node

35 is considered as an example), the histogram derived from Figure 8A is a bimodal distribution

(Figure 8C), while the one derived from Figure 8B is a skewed distribution centered at zero

(Figure 8D). Moreover looking at Figure 8A, two different behaviors of the distribution of values

of a single row can be observed. In particular, for some rows the average difference, between

HC and AD, of normalized shortest communicability path length with the other nodes of the

network is mostly positive, while for other nodes it is mostly negative. Thus, the nodes seems

to be clustered according to this different behavior. In order to show how these two different

groups are distributed in the brain, we have represented the brain regions on a glass brain

coloring the corresponding nodes according to the median of the distribution of the values

over row (Figure 9). Also the dimension of the nodes is descriptive of the median value. The

cluster of nodes with the highest median values includes cerebellum, vermis, and amygdala.
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Figure 8. (A) Heat map of the difference between the averaged normalized shortest communi-
cability path length for HC and AD. (B) Heat map of the difference between the averaged shortest
topological paths length for HC and AD, in the same scale of A. (C) Distribution of the values of
one row (row 35 is considered as an example) of heat map A. (D) Distribution of the values of one
row (row 35 is considered as an example) of heat map B.

Figure 9. The glass brain shows for each node the median of the distribution of the difference in
HC and AD of the mean normalized shortest communicability path length with all the other nodes
of the network; the node color and dimension are descriptive of these values. The different views
show the lateral and medial sides of each hemisphere, and the dorsal and ventral side.
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From these heat maps we can observe that there are pairs of nodes for which AD increases

the shortest communicability and topological paths while for others it decreases them. The

difference between the distributions of Ŝ(HC) and Ŝ(AD), that is, when Pi is a healthy or AD

individual, respectively, is statistically significant.

A group-wise statistical analysis using permutation tests with multiple comparison correc-

tion (both FDR and Bonferroni correction) was performed in order to find which node pairs

have a significantly different value of the normalized shortest communicability path length in

HC and AD. This can allow one to restrict the focus to only these node pairs, among all the

possible node pairs. This procedure was applied for all thresholds.

Let us call ∆ ij = Ŝij(HC)− Ŝij(AD) the difference of the average normalized shortest path

communicability distance for the edge (i, j) in both the healthy and the AD cohorts. Let us then

call ∆tij = ˆStij(HC)− ˆStij(AD) the difference of the average shortest topological path length.

Then, we can observe that among the node pairs with statistically significant different values of

the average normalized shortest communicability path length, there are both node pairs with

∆ > 0 and ∆ < 0. Instead, for the node pairs with statistically significant different values of the

average shortest topological path length it is always ∆St < 0. For example, Figure 10 shows the

histograms of ∆ and ∆St (we generally call the difference of an average shortest path measure)

for the significant node pairs and for the best threshold value (τ = 0.5).

Figure 10. Histogram of ∆Sp = Ŝp(HC) − Ŝp(AD) for the significant node pairs for the best
threshold value (τ = 0.5). Blue color refers to the difference of the average normalized shortest path
communicability distance while orange color refers to difference of the average shortest topological
path length.
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Figure 11. Glass brain visualization of the difference between the mean normalized shortest com-
municability path length of the significant edges in HC and AD; the edge colour is descriptive of
these values. The different views show the lateral and medial sides of each hemisphere, and the
dorsal and ventral side.

The values of ∆ ij for the set of 399 node pairs with significantly different average normalized

shortest communicability path length for the best threshold (τ = 0.5) which were selected

according to the Bonferroni correction are illustrated in Figure 11.

A deeper analysis of these node pairs provides some illuminating information about the

structural influence of AD. Let us resume this information as follow. From the 399 significant

node pairs considered here:

1. 110 (27.6% of significant pairs) connect regions in the left hemisphere;

2. 41 (10.3% of significant pairs) connect regions in the right hemisphere;

3. 167 (41.8 of significant pairs) connect one region of the left with one region of the right

hemisphere;

4. 31 (7.8% of significant pairs) connect the vermis to the right hemisphere;

5. 50 (12.5% of significant pairs) connect the vermis to the left hemisphere.

These results indicate that almost one half of all the pairs of nodes for which there is a

significant difference in the shortest communicability paths after AD connect both brain hemi-

spheres. This result supports the disconnection hypothesis of this disease in which the damage

produced by AD can be attributed not only to specific cerebral dysfunctions but also to dis-

connection processes between different cerebral areas (Morris, 1996; Morrison et al., 1986).

In particular, the disconnection between interhemispheric regions have been widely discussed

in the literature and reviewed by Delbeuck et al. (2003). They compiled evidence about the

hypothesis of AD as a disconnection syndrome from neuropathological data, the electrophysi-

ological and neuroimaging data, as well as from neuropsychological data. Some of the earliest
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evidence supporting this hypothesis point to the fact that there is a disorganized functional

activity between the two hemispheres in the early stages of AD and a loss of positive correla-

tions between the hemispheres, which suggest a breakdown of the interhemispheric functional

association. Other evidence reviewed by Delbeuck et al. (2003) are a decrease of associative

white matter fibers in the corpus callosum splenium of AD patients, the existence of a mod-

ification in the functional interactions between the hemispheres, and the existence of lower

coherence between the hemispheres in mild to moderate AD patients compared to controls,

suggesting a disturbance of the interhemispheric functional connectivity in AD. More recently,

Wang et al. (2015) obtained experimental results that demonstrate that there are “specific pat-

terns of interhemispheric functional connectivity changes in the AD and MCI, which can be

significantly correlated with the integrity changes in the midline white matter structures.” And

Qiu et al. (2016) reported homotopic interhemispheric functional connectivity disruption in

AD but not MCI.

Another third of these significant edges are located inside the left hemisphere. These re-

sults parallel those supporting the hypothesis that AD evolves first, faster, and more severely

in the left hemisphere than in the right (Giannakopoulos, Kövari, Herrmann, Hof, & Bouras,

2009; Thompson et al., 2003). As shown by Thompson et al. (2003), the spreading waves of

gray matter loss were asymmetric in both hemispheres, with the left one having significantly

larger deficits and with faster local gray matter loss rates than the right one. Their finding also

correlated with progressively declining cognitive status. Finally, we have found 81 pairs that

connect the vermis either with the right or the left hemisphere. Recently, the role of cerebel-

lar gray matter atrophy in AD has been studied (Mavroudis, et al., 2013; Jacobs et al., 2018).

Jacobs et al. (2018) have found that in the early stages of AD the vermis and posterior lobe

of the cerebellum are affected, also confirming previous results by (Mavroudis, et al., 2013),

who reported severe damage in the Purkinje cells from the vermis of the cerebellum in five

AD patients.

Transmissibility and circulability of AD factor

As explained before, among the pairs of nodes that have significant differences between healthy

and AD cohorts, there are pairs with positive as well as with negative values of ∆ ij. Pairs of

nodes for which ∆ ij > 0 corresponds to brain regions that have decreased their normalized

shortest communicability path length when AD is present. Those for which ∆ ij < 0 corre-

sponds to brain regions that have increased their normalized shortest communicability path

length. A resume of our results for the pairs that increase and decrease the normalized shortest

communicability path lengths is given below:

1. Left hemisphere: 31 pairs increased Ŝ (Pi) and 79 pairs decreased it;

2. Right hemisphere: 6 pairs increased Ŝ (Pi) and 35 pairs decreased it;

3. Left-Right hemispheres: 55 pairs increased Ŝ (Pi) and 112 pairs decreased it;

4. Vermis-Left hemisphere: 0 pairs increased Ŝ (Pi) and 31 pairs decreased it;

5. Vermis-Right hemisphere: 0 pairs increased Ŝ (Pi) and 50 pairs decreased it.

These results indicate that in total 76.9% of all node pairs that display significant change

after AD have decreased the length of the shortest communicability paths connecting them.

This is a highly counterintuitive finding because it literally means that the nodes “are closer”

to each other in terms of their communicability distance after the AD has appeared. In order

to disentangle the meaning of this finding, we will consider the example provided in Figure 5.
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We will consider the removal of edges which do not disconnect the graph, which are

known as cyclic edges (in the graph in Figure 5 all edges are cyclic). First we will prove the

following result.

Let Γ be a graph and let Γ − e be the same graph without the cyclic edge e = {a, b}.

Then, if Gpq (Γ) =
(

eγA(Γ)
)

pq
we have that Ḡpq (Γ) ≥ Ḡpq (Γ − e), where Ḡpq is the average

among all pairs of nodes. The proof is given by the fact that if e = {a, b} is removed, the

length of all walks between a and b will increase, and no other walk will decrease its length.

Consequently, the removal of an edge in a graph will drop both the average transmissibility

T̄ (Γ) = Ḡp 6=q (Γ) and the average circulability C̄ (Γ) = Ḡpp (Γ) of a disease factor. However,

because the communicability distance ξpq is the difference between the circulability around

the nodes p and q, and the transmissibility between the two nodes, we have the following

situations. Let ∆ξ2
pq = ξ2

pq(Γ)− ξ2
pq (Γ − e), and ∆Gpq = Gpq(Γ)− Gpq (Γ − e). Then,

∆ξ2
pq =

[(

Gpp(Γ)− Gpp (Γ − e)
)

+
(

Gqq(Γ)− Gqq (Γ − e)
)]

− 2
[

Gpq(Γ)− Gpq (Γ − e)
]

= ∆Cp + ∆Cq − 2∆Tpq.
(15)

Consequently, when∆ξ2
pq < 0we have that Gpp(Γ) / Gpp (Γ − e) and Gqq(Γ) ' Gqq (Γ − e),

while Gpq(Γ) ≫ Gpq (Γ − e). When, ∆ξ2
pq > 0 we have that Gpp(Γ) ≫ Gpp (Γ − e) and

Gqq(Γ) ≫ Gqq (Γ − e), while Gpq(Γ) ' Gpq (Γ − e).

1. ∆ξ2
pq < 0 implies that the drop in the transmissibility of the disease factor is bigger than

the drop in the circulability around the nodes. That is, in Γ− e dominates the circulability

to the transmissibility compared to Γ;

2. ∆ξ2
pq > 0 implies that the drop in the circulability of the disease factor is bigger than the

drop in the transmissibility around the nodes. That is, in Γ − e dominates the transmissi-

bility over the circulability compared to Γ.

In Table 1 we report the results that illustrate the previous reasoning for the graph in Figure 5.

First, we report the change in the average shortest path length ∆L̄ after the removal of the

corresponding edges according to the node labeling in Figure 5. The removal of the edges

{1, 2}, {1, 9}, and {8, 9} produce significant increase of the communicability shortest path

Table 1. Values of different structural and dynamical parameters for the graph illustrated in Figure 5
to which edges have been removed. See note below.

edge ∆L̄ (%) ∆Ḡpp (%) ∆Ḡpq (%) ∆tinf (%)

{1, 2} −25.4 10.0 19.2 30.5

{1, 9} −23.2 15.7 26.5 25.7

{8, 9} −21.5 17.7 29.6 16.9

{3, 5} −0.04 14.9 15.6 3.8

{2, 5} +0.89 15.9 15.0 3.8

{2, 4} +1.42 18.4 18.7 3.8

Note. The edges correspond to the labeling of the nodes in the mentioned figure. ∆L̄ (%)

is the percentage of change respect to the original graph in the average communicability

shortest path length. ∆Ḡpp (%) and ∆Ḡpq (%) are the percentage of change with respect to

the original graph for the values of Gpp and Gpq averaged for the nodes and edges in the

shortest communicability paths. ∆tinf (%) is the time needed by a disease factor to infect all

the nodes of the corresponding graph in an SI simulation by using the approximate solution

described below with β = 0.005 and initial condition xi(0) = 1/9 for all i.
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lengths, that is, ∆ξ2
pq < 0. The edge removals {2, 5} and {2, 4} decrease the communicability

shortest paths, that is, ∆ξ2
pq > 0. As can be seen for those graphs in which ∆ξ2

pq < 0 the relative

drop of ∆Ḡpq, averaged for all edges in the shortest paths, is significantly bigger than that of

∆Ḡpp, averaged for all nodes. In the case when ∆ξ2
pq > 0, the change in ∆Ḡpq is of the same

order than ∆Ḡpp. It is reasonable to think that edge removal increases the time needed by the

disease factor to infect 100% of the nodes in the network. If we designate this time change by

∆tinf and calculate it as the minimum time at which all the nodes are infected in the graph by

using the approximate solution of the SI model (upper bound), we obtain the results given in

Table 1. As can be seen when ∆ξ2
pq < 0, the increase in the infection time is dramatic, ranging

from 17% to 30%. In remarkable contrast, when ∆ξ2
pq > 0, the increase in tinf is only 3.8%.

In closing, when ∆ξ2
pq > 0 the orifinal network has been transformed into a more efficient

one, from the perspective of the transmission of the disease, because in Γ − e the circulability

around the nodes of the disease factor is sacrificed to the transmissibility to other nodes.

It is now important to analyze what are the consequences of the decrease in the lengths of

the communicability shortest paths that we have observed for AD brains. The main implication

of this observation is that AD produces some damage to the brain, not necessarily only edge

removals, which somehow improves the “efficiency” of the resulting networks to propagate

the disease in relation to other possible damage scenarios. If we constrain ourselves to the

edge-removal scenario and use the previous graph as an example, we can conclude that AD

has removed those edges which “improve” the transmissibility over the circulability of the

disease factor, by affecting as least as possible the global rate of contagion in the resulting

networks. This is an inference based on the analysis of data produced on AD patients and

comparing them with HC. In no case does it correspond to a direct observation of this effect,

and we call the attention of experimenters to try to falsify this hypothesis. We should remark

that in 2013, Tomasi et al. (2013) found by using MRI “a higher degree of connectivity was

associated with nonlinear increases in metabolism.” Recent work in network neuroscience has

proposed ways to navigate the brain avoiding the “hubs” due to their high energy consumption

(Seguin, Van Den Heuvel, & Zalesky, 2018; Yan, Sporns, & Avena-Koenigsberger, 2020a).

Thus, according to our findings, AD produces damage in the connectivity of the brain, which

drop more significantly the cliquishness—the degree is a first order approach to it—over the

transmissibility. Thus, it is also plausible that propagating the AD through the different regions

of an already-damaged brain is less energetic than in the nondamaged one. All in all, the

damage produced by initial stages of AD seem to improve the capacity of the disease factor to

propagate through the network more so than in the undamaged one.

CONCLUSIONS

There are twomain conclusions in the current work. From a theoretical perspective for network

neuroscience, we have shown that the communicability function—widely used in this field—

can be mathematically connected to the solution of an SI model of disease factor propagation

in a brain network. In particular, we have shown that the communicability distance accounts

for the difference between the circulability of this disease factor around a brain region (node)

and its transmissibility to another region of the brain.

From an application point of view, we have provided solid evidences that the shortest com-

municability path length is significantly better than the shortest topological path length in

distinguishing AD patients from healthy individuals. We have identified a set of 399 pairs

of regions for which there are very significant changes in the shortest communicability path

length after AD appears, 42% of which interconnect both brain hemispheres and 28% of

which connect regions inside the left hemisphere only. These findings clearly agree with the
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disconnection syndrome hypothesis of AD. We have also identified 20% of affected regions

that connect the vermis with any of the two brain hemispheres. The most significant result is

that in 76.9% of these pairs of damaged brain regions there is an increase in the efficiency to

transmit the disease factor across the brain network in relation to healthy individuals.

In closing, we hope that the current work helps to shed light on an important mechanistic

aspect of AD as well as to afford a better understanding of the use of communicability functions

for network neuroscience studies.
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